• Content Count

  • Joined

  • Last visited

Community Reputation

47 Neutral

1 Follower

About pdf27

  • Rank
    Regular Member

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. Even the big, high quality ones are getting cheaper - was recently quoted £300k for a SLA unit capable of printing parts up to almost 1m3. Prices are going down by ~10% per year at the moment.
  2. The Freeholders have offered to sell the freehold for £13m, funny enough the leaseholder wants to pay rather less for it...
  3. Apologies for the delay in replying - I got hit with a combination of a dead motherboard, crazy busy-ness at work and my eldest starting school all at the same time. I have, and am not at all convinced that it's a significantly better way to go - costs seem to scale fairly linearly with the amount of work involved. PH requires a lot of detailed design and quality assurance, and that puts up the price - but from bitter experience I know it doesn't necessarily save anything in the long run. We're in a nasty corner of circumstances which make all of the alternatives that bit harder: We're on a plot ~15m x 50m, with the south facing side being the short one facing the road at the front and houses right up against the boundary on either side. The current building is L-shaped, but anything not on the front or the back tends to get awfully dark for much of the year. That means the final building really needs to be a rectangle across the width of the plot - so any side extensions would need planning not PD as I understand it. Prices appear to have gone up significantly (~10%) in the past year, most likely Brexit-related. Housing associations are apparently talking about bringing in projects at no less than £1,800/m2 - so less than £2,000/m2 is feasible for a bigger house but the 10% price increase translates to a smaller house on a fixed budget. We're right on the point of very nearly but not quite working - and that budget includes everything, with no contingency. Kitchens, bathrooms, etc. we can certainly save a bit on, beyond that we're very time limited. We've got two young kids (2 and 4), both work - I'm in a fairly high pressure job and likely to go up a grade soon, my wife is less so but I know from experience on the renovation we did to our last house that she'll offer to do something and it won't happen. We're in a nice part of the world on the outer edge of the London commuter zone - which will push the cost of everything up a bit. Nope, fees are broken out separately. This is actually the architect saying "I don't think you can afford to do what you want, so I don't think you should pay me to start working on the design". It's mostly based on the total spend for a number of similar projects that they've run locally - all of them came in quite a bit over this, and they've shared with me the rough cost breakdown and reasons why. I think he's being as open as he can with me about likely costs given what we want to do.
  4. It's turning into a bit of a headache: Plan A was to extent and refurbish. It's possible to do, but by the time we did everything we wanted there was very little left of the original structure. Worse, any refurbishment attracts VAT at 20% while a knock down and rebuild doesn't. Essentially if you're trying to refit to a high standard there is a strong possibility that it will be cheaper to knock down and rebuild than to refurbish. Plan B was to knock down and refurbish. That's the current problem - the architects (who have build a number of Passivhauses locally) are of the view that we should be budgeting at £2,000/m2 of internal floor area given that we aren't able to do much of the work or project manage ourselves. That's a mix of things - prices going up 10% in the past year, the fact that we're in easy commuting distance from London, there is an existing structure to demolish, etc. We can afford a reasonably sized house that meets our needs OK, but which is really a bit on the small size for the plot which will hurt the resale value - if we were going to stay there forever that wouldn't be a concern, but there is a strong possibility we will want to move. That means we need to maximise the ratio of cost to resale value - and so need to push for a bigger house than we can really afford right now. Plan C doesn't exist yet!
  5. It’ll take a minor hit - glycol is a bit more viscous so the circulating pump has to work harder, and the heat capacity is a little lower which will push the flow temperature up marginally and so the COP down. The impact will be very small though - a couple of percent I’d guess.
  6. Interesting, thanks - I hadn’t seen that article. That’s what, 15-20% margin they’re making on the sales price? Given the economies of scale they have most of us would struggle to make a profit at all I suspect.
  7. Even most of the national house builders aren’t making a huge margin on what they do. If you want to make money, you might well be better off renovating somewhere tatty than doing a new build. For perspective, we’re living in an old & rather dilapidated bungalow with a huge garden we got very cheaply from a distressed seller, in an expensive village within a reasonable commute from London. Lots of big new builds going up, but we’re going to really struggle to do any more than break even on the build. We love the site and village (if not the house itself), though, so that’s ok for us. It isn’t a commercial proposition though.
  8. This thread has got me thinking about a problem of my own. Some way before the bottom of our garden we have a selection of rather large and somewhat ugly Leylandii, courtesy of the previous owners. There are some smaller trees beyond them (2 very mature apple trees, one that I think is probably hazel, a plum tree and some mixed shrubs), but realistically if we take them down we'll want replace them with something else to largely block out the sight of the houses at the back. Essentially I'd like to thicken up the existing block of deciduous trees at the back rather than just create a screen from scratch. I don't think we need evergreens as the garden isn't likely to be used much in winter and the plot is fairly large (200ft x 50ft) with the house towards the other end of it, so the overlooking isn't serious. We're also likely to be here for a while so can afford to plant smaller trees that will take a few years to become established. Ideal ultimate height would be about 5-6m - enough to fully block out the view of the houses but no more: that view is almost directly north and the fruit trees are currently suffering quite badly from shading. Ideas so far are: Half-standard cherry tree (flowers, wildlife and eating) Half standard pear tree (flowers and eating) Magnolia (flowers) Mountain Laurel (flowers) Lilac (flowers) Rowan (berries, leaves, height without overshading fruit trees behind) Any other suggestions? I figure we probably want 3-4 trees to fill up the gap.
  9. Provided that the rate of change in slab temperature is slow enough, all the time constants are known and you can accurately measure average slab temperature, that should have worked fine. As TerryE notes, however, the building time constants are really long and the temperature you need isn't the current one but the average over the past 18-24 hours or so - if the flow temperatures are relatively high giving a fast responding slab coupled to a control system responding to current outside temperatures, you're going to end up with the thermal equivalent of a pilot-induced oscillation. My belief is that the critical change was in reducing the flow temperature - a shift from say 35°C to 25°C flow should cut the overshoot for a thermostat set to 20°C by a factor of 3. Realistically going much lower than 24-25°C will be quite difficult in that the pipes might not be able to deliver enough heat on a very cold day. The next improvement would probably be in reducing pipe spacings a bit - this should help reduce the average difference between concrete and water temperature, and so mean that room temperature rises slightly earlier. That would potentially let the thermostat catch things before as much energy had gone into the slab, reducing overshoot (I think - that one needs a bit more thought). It almost self-regulates: the heat moving from slab to room is a function of the difference in temperature between the two. Going by @TerryE's experience, at 1 degree temperature difference this is 7W/m2. A 50% increase in losses would only cause a shift in temperature of 0.5°C. In a well-insulated house that's mostly acceptable - I'd be fine with it, others (including my wife) probably would not. The one problem to be aware of (as @JSHarris found) is that measuring the slab temperature directly and then controlling it is quite hard. Because the slab temperature has such a strong influence on the air temperature in a well insulated house, however, you can get the same effect by just using a conventional thermostat. In both cases you're effectively controlling the slab temperature because that's what you're putting heat into - it's just that measuring air temperature is a lot easier and makes it less work to calibrate the comfort level you want as it can be set directly rather than via a couple of heat transfer coefficients.
  10. Apologies, it's been a long week and I have a head full of cotton wool at the moment so I'm not expressing myself clearly. As I understand it, heat pump driven systems have constraints that your Willis Heater system does not - notably a minimum flow temperature (typically 25°C) below which they cannot add heat. For efficiency (Carnot) reasons, I want to operate any system at this minimum flow temperature for as much time as possible - ideally designing it such that the design 10 W/m2 heat load can be provided by a unit running full time at 25°C. Most heat pumps have their own circulating pump built in - using this rather than an external pump, combined with the use of the heat pump for flow temperature control will give the simplest plumbing design available with a heat pump. As a matter of policy, I want to use absolutely standard OEM control systems only to provide heating and hot water - I appreciate that a homebrew system would probably be quite a bit better, but I simply don't have the time or energy to implement one nor do I want to deal with having to try to fix it remotely if there is a problem while I'm away from home. I'm happy to be more creative with Smart Grid controls, but with those the only impact would be a small increase in the electricity bill rather than any comfort effects, so no time constraints apply. Because I have a mechanical engineering background, I want to use parameters like pipe spacing and flow temperature to provide the majority of the control, with the residual being provided by a simple temperature switch (thermostat). When designing a mechanical system you typically aim to minimise the amount of control it requires, and to simplify the control system as far as possible - mostly because control systems are horrifically unreliable compared to purely mechanical systems. While this isn't a genuine problem in most domestic cases, I'm going to be seriously uncomfortable taking any other approach. I didn't realise your house time constant exceeds 24 hours - that makes using actual data a lot more feasible. You're still vulnerable to changes in internal heat generation however - your predictions are based on standard internal gains plus predicted external losses based on the temperature seen the day before. OK, it's overwhelmingly likely to be a "too hot" problem which the MVHR can handle, but it's too heavily driven by the requirement for E7 for me to be happy with.
  11. I'm not that good at fiddling with the mesh, so I'd be constrained to an (r, θ, x, t) space anyway. Absolutely it could be done (and certainly would be if you were doing it yourself), but I'm not sure how well supported it is in commercial packages where it wouldn't be something they would look at a lot. At which point you really come back to not controlling anything - if you're fixed to 100m loops and a given floor area, then the only control you have is from picking the centres. Realistically that's going to be from a fairly limited menu anyway as you want to try to keep the loop length fairly close to 100m in order to ensure the time constant isn't too short. Instinctively the timescales should be fine and nothing should fight, but I'm always a lot happier when I have a realistic model, and only ever comfortable when I have proper, validated test data (not the same as experience or playing around with something for a few days to test it, unfortunately).
  12. https://www.vcharge-energy.com It's a tool that lets them turn on loads remotely in order to shift demand around in time, balancing loads on the grid a bit better.
  13. http://www.c60design.co.uk/many-cats-take-heat-passive-house/ "In summary then, cats are expensive and wasteful"
  14. A seated or sleeping person is worth about 100W. That many people is probably a third of the heating you would require on a design low temperature day!
  15. Because they're cheap and it isn't my main job, I've only got a fairly slow laptop to run Ansys on so anything normally requiring 10 hours will run out of memory and crash long before it gets to a solution. The model I've run previously - basically a 150mm by 150mm section of floor using symmetry between pipes and a zero heat transfer condition at all edges except the top - would probably be quite amenable to looking at over time, and runs pretty fast. Because it's meshed anyway, there really isn't a lot of benefit to assuming radial symmetry - the software would just create a circular rather than rectangular mesh. One thing this might be useful for is working out what the minimum and maximum pipe spacing is - if you put too much pipe in, then depending on the flow rate of the circulating pump you might have short cycling issues, while with too little you won't be able to provide sufficient heat at a low flow temperature. Absolutely. In any case, the buffer tank in most cases is there to smooth out oscillations/short cycling from the TMV, rather than the tank - and the TMV is there mostly because combustion systems can't regulate water temperatures down low enough not to get chronic temperature overshoot in most normal houses, let alone a properly insulated one. Fit an appropriately sized ASHP with the flow temperature turned all the way down, however, and all those problems go away. The amount of heat it can put in is limited so the reaction time will be quite slow, but because the slab itself has such a high inertia that will happen whatever you do. More importantly, you can't get the air in the house above the flow temperature without breaking the zeroth law - and the T4 relationship in radiative heat transfer will keep average slab temperature and perceived air temperature (itself heavily influenced by radiative heat transfer) very close together. That's the one area I dislike your system - in the 3-4 month time section essentially it relies on guessing about right what the weather will be like tomorrow, over-warming the slab slightly and dumping any excess heat through the ventilation system. It clearly works well - unsurprising given the long time constant of the structure and slab plus the ability of the ventilation system to dump heat from the air - but it's fundamentally inelegant to my mind. I would far rather use a standard air thermostat to call for heat, and the fact that an inverter-driven pump will have a maximum return temperature above which it can't maintain minimum output power to turn it off again. By the time it is allowed to run again, the room temperature should have risen and the system stabilised. The one weakness in this system is that there are two or three interlocking time constants - that of the slab warming up and warming the air, that of the return water warming up and tripping the heat pump, and the anti-short-cycling mode in the pump. Provided that the air warms faster than the water plus short-cycling requirement, it should work very nicely. Kids are currently 2 & 4 plus hate bathtime, so at the moment hot water demand is very low. That'll change when they become teenagers, however - assuming we're still here. I'm not interested in using a buffer tank for preheating however - far simpler just to have a big hot water tank like @Stones used plus a shower heat exchanger. Mark/Space ratio would be driven by the thermostat, assuming the time constants match up which I think is probable but I'm not quite sure how to model. Essentially this is staying in your December/January/February mode all year round. Given how fast PV prices are dropping, we're almost certain to have a lot of it. That makes using the smart grid functionality in most heat pumps a no brainer - when PV is available, heat water first and when the tank is full turn the thermostat up by a degree. That's unlikely to be a comfort problem, and the long time constant means that no further (paid for) heating will be needed for quite a while afterwards. My current thinking is to use whatever thermostat is packaged with the heat pump I end up with - I don't have a problem with temperature varying by a degree or so, so don't feel the need to go for super-accurate or low hysteresis temperature measurement. Agreed. The Passivhaus evangelicals talk about night venting being the solution to everything, but every year for a few days you'll have a period where it's 30°C inside and out for days on end. Treating it as a system an ASHP appears to me to be the most cost-effective way of providing this cooling since it can also provide heating and hot water very cheaply too. Yes. As you will have noticed I'm not at all a big fan of lots of glass (driven by the 15 kWh/m2/year requirement, largely). In our particular case the SE elevation at the front faces onto a busy road, while the NW elevation at the back faces onto a rather nice large garden. That means I want the house biased towards the garden, and don't want too much south facing glass. That supports my instinct that the 10 W/m2 condition is a more appropriate one anyway in most cases - I get the feeling the use of lots of glass for heating in the shoulder seasons is a hangover from before heat pumps were readily available and people had to use gas or electric resistance for heat, in which case hitting the primary energy targets was almost impossible without a lot of glass for additional heating. It isn't needed any more, but when you start thinking in terms of a particular design solution it's very hard to shift out of it to another one.